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Abstract

Statistical noise is usually a main concern in collecting data. Technical malfunction 
of devices or asynchronous data collection could easily lead to noise appearance. 
In this paper, we provide some methods for handling noise through the development 
stages in statistics. While the traditional frequentist approaches could lead to errors 
in forecasting, methods using Bayesian Statistics “framework” are proposed to deal 
with noise in data, and issues that need to be improved in these methods are also 
mentioned.

INTRODUCTION
Data processing in frequentist statistics generally follows 

the parametric and nonparametric methods [1]. In parametric 
methods, we begin with an assumption of normal distribution for 
population. However, real data hardly follow normal distribution 
which makes it more difficult to process with noise.

Nonparametric methods do not require an assumption about 
the specific form of the population’s probability distribution. 
Nevertheless, the problems in these methods would be based 
on the measures of central tendency (equivalent to mean) used 
in estimation and parameter test and the measures of variation 
(equivalent to standard deviation).

Problems in frequentist statistics all have one thing in 
common: the p - value. Controversy surrounding use of p - value 
hypothesis tests is drawing a lot of attention statistics circles, as 
in [2-4].

Indeed, using frequentist Statistics to process data could lead 
to mistaken inferences since the calculated results rely on the 
samples observation which causes the tests or the estimation 
efficiency to be unstable under small changes of the underlying 
distribution, even if there are some alternative methods in [5]. 
Therefore, if data contain outliers, as in [6], classical estimates 
such as sample mean, sample variance, sample covariances and 
correlations, or the least squares fit of a regression model will be 
misleading. In order to restrain the mistakes, Maronna et al. [6], 
suggested robust parameter estimates when there are outliers.

However, when estimating parameter by robust methods, 
e.g. the median as central tendency of data, we might deal with 
integration mess.

As it might be seen, from frequentist point of view, estimated 
parameters (parametric or nonparametric) are considered 
as constants while in reality, these estimates always change. 
Therefore, we need to change our mind that these parameters 
should be represented as probability distributions, and this 
exactly what Bayesian Statistics assumption is, where parameters 
are considered as random variables [7].

Bayesian Statistics, nonetheless, has difficulties in choosing 
appropriate prior distribution such that the posterior 
distribution best matches reality. In addition, noise in data can 
make likelihood function and prior distribution deviated from 
reality. Even though Bolstad and Curran in [8] have proposed 
Robust Bayesian Methods, using median as central tendency of 
data can also result in imprecise inference.

In this paper, we suggest an efficiency evaluation of a 
statistical method through the performance of forecasting 
observations, which is from Shmueli’s point of view [9].

In the next sections, we will give a brief summary of some 
methods of forecasting for stationary time series, including 
Frequentist Statistics in section 2, Robust Statistics in section 
3, and Bayesian Statistics and Inferential models in section 4, 
accompanied by misleading that one’s may encounter when 
processing data with noise. The last section will be the conclusion.

STATIONARY TIME SERIES AND FORECASTING 
METHODS BASED ON FREQUENTIST STATISTICS

Some of the first forecasting methods that are appropriate for 
a time series include moving averages, weighted moving averages 
and exponential smoothing. Besides, a brief summary of methods 
that are appropriate for time series exhibiting a horizontal or a 
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trend pattern is also provided in this section [1].

Averages method: The forecasts of all future value are equal 
to the mean of the historical data (2-1).
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where 1 2, ,... Ty y y
 are historical data. This method will 

be illustrated through a real data set which is available as a 
Supplementary Appendix at IJE Online [10] (Figure 1) represents 
how the data is distributed in time series. 

Drift method: This method uses the average of the most 
recent k  data values in the time series as the forecast for the 
next period (2-2).
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Seasonal Naive method: Forecast for time T h+  is written 
as (2-3).

U U   
 / T h kmTy h T y + −+ =

Where 

m is the seasonal period, 

k is the least that satisfies 
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m
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Linear Trend Regression: It is presented by (2-4).

0 1 ,TT b b t= +  (2-4)

Where

tT is the linear trend forecast in period t ,

0b is the intercept of the linear trend line,

1b is the slope of linear trend line,

t is the time period.

Nonlinear quadratic trend equation: The form of nonlinear 
quadratic trend equation is (2-5).

2
0 1 2tT b b t b t= + +                                                               (2-5)

Exponential trend equation: The form of exponential trend 
equation is (2-6).

( )0 1
t

tT b b=                                                                             (2-6)

We will measure forecast accuracy by the following formula, 
according to [1] we have (2-7),

Forecast Error = Actual Value – Forecast                                   (2-7)

Obviously, if we use all values of data with noise to forecast, 
the above methods will evidently result in errors.

Our tested data consists of ozone density 3/g mµ , 
temperature (ºC) relative humidity (%) and number of deaths in 
London from 2002 to 2006. In most cases, frequency methods in 
forecast would be reliable if the data are normal distributed or 
approximately normal distributed. However, in this dataset, only 
the number of deaths data follows normal distribution. The ozone 
and temperature are positive skewed, whereas the humidity data 
is negatively skewed (Figure 2).

We apply Moving Average methods to the time series with the 
original data or adjusted data which focus on upcoming trends 
before forecasting. Number of historical data used for forecasting 
is another issue which should be considered for comparison. In 
our test, we use 30T =  and 365T = , or the first month and 
year, respectively. Lower and upper bounds for prediction are 
95% or 84% confidence. Based on particular data ranges of all 
attributes, we suggest using constant bound on each prediction 
for a better perspective between each method and guaranteeing 
reasonable intervals, which are 10, 20± ±  for ozone, humidity, 
number of deaths attributes and 2, 3± ±  for temperature. Table 
1 shows some results of the possibility of a real data falling in the 
forecasting intervals by using Moving Average method. Table 2 
on the next section also shows some results from similar method 
to Moving Average, but using median instead of mean.

FORECASTING METHODS BASED ON ROBUST 
STATISTICS

In case of noise in data, robust statistics can be used to remove 
noise through parameters in the location model.

The outcome ix  of each observation depends on µ of the 
unknown parameter and on some random error process in 
formula (3-1).

, 1, ,i ix u i nµ= + =                                                                   (3-1)

Where the errors 1 2, ,... nu u u  are independent and 
identically distributed random variables [6]

Therefore, estimates of have the form as the median. There 
is also another model for outliers which is called  f at - taled or f 
at - tailed distributions [6].

An extended case when each ix  is represented by a model 
with two unknown parameters by (3-2).

i ix uµ σ= +                                                                    (3-2)

Where iu  has density 0f , and Maronna et al. [6], also has 
shown that using bootstrap method can have better results. 
However, simulating more data will lead to difficulty of large 
dataset, which results in high complexity of data organizing 
algorithm.

It is worthy of note that the data can be in continuous or 
discrete form. Robust Statistics will have better results than 
Frequentist Statistics if the data is continuous. On the contrary, 
in discrete form, our work of examining a song whether it is a 
plagiarism has shown that using median will make features to be 
divided into two sections which might result in misleading. The 
same situation holds when researching DNA’s information.

BAYESIAN STATISTICS AND INFERENTIAL 
MODELS

Bayesian statistics

In Bayesian Statistics, assumes that the sample distribution is 
( / ),f x θ  in which ( )π θ , prior distribution on θ  is available, 

then the posterior distribution is obtained by Bayesian formula 
(4-1) [7].

( / ) ( )( / )
( / ) ( )
f xx

f x d
θ π θπ θ
θ π θ θ

=
∫

                                   (4-1)

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/ije/42/4/10.1093_ije_dyt092/1/dyt092_Supplementary_Data.zip?Expires=1512905757&Signature=g1f3lLxwDT14dlOtCdknvgzLKPAml~E2xcoEQn7Lc4lgqbsWGZDaR-EzVGu0Y8kBCDhQkJBqtrBdwAB7lwzpUl31nUdJLB2f1mqgmjOjpBjEhd18JCFjlLFba7xZMO8Ye7wTXeVufK0swOPCjHVsjE0Sc7f6pmnBjT54QVTN-Bx0NPYgW9Onw9qJhedFtZMTO-0snDei3L2FPukG6NMStn4EY-TafREEdwdhjv1izNlMgIQkspI78uIG17mF~dphwZ9qoEas6e7Y-UrYimDd1MFRKFaXeWdNxAQSCImRFul1IbpKdKrJqyD7j0zK4wQW9mFB-WbRDmK6ATN7p178vQ__&Key-Pair-IIMPORT
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The posterior distribution is the updating of the information 
available on θ , then, based on the information contained in 
( / )l xθ  in which ( )π θ  represents the information in the 

priori before observing x .

The predictive distribution of y, when ~ ( / , )y g y xθ , is 
obtained by (4-2).

( / ) ( / , ) ( / )g y x g y x x dθ π θ θ= ∫                                (4-2)

The main key to Bayesian analysis is choosing the prior 
distribution [7], since knowing the prior distribution can lead 
in inference by minimizing posterior losses, computing higher 
posterior density region or integrating out parameters to find 
the predictive distribution. This is almost the most difficult since 
the prior information in practice is hardly precise enough which 
adversely affects the exact determination of the prior distribution.

Table 3 and Figure 3 show the results and plots of Bayesian 
forecasting method

When data contain noise, it is then necessary to choose 
reasonable prior distribution to have posterior distribution 
which best suits the data in order to get the most accurate result. 
Although Bolstad et al. [8], has used robust methods to reduce 
noise, as can be seen, we will have some issues of using median 
in computing as it might divide features into two sections which 
leads to incorrect results.

Inferential models: Ryan Martin and Chuanhai Liu 
introduced a new framework of statistical inference [11]. It is 
somewhat between classical and Bayesian approaches because it 
not only bases on observed data but also introduces a “semi-data 
driven” which might be considered as a “prior” idea.

An inferential model will give a “relation” between the 
variable of interest and its distribution.

Let X be the real-valed random variable of interest 
defined on some pro xF

 ability space ( , , )A PΩ , and let 
1, 2( ,..., )nX X X X= be the observed data drawn from X  

and wish, among other things, to discover the law governing its 
random evolution, and to predict its future values.

The distribution function ( ) : [0,1]F ⋅ →  of X  is 
defined as (4-3).

( ) ( )F x P X x= ≤                                                    (4-3)

The relation actually link X with its distribution F (or xF  
when needed)

A more “formal” relation between X and F is obtained via 
its quantile function 1( ) : (0,1)F − ⋅ →  , which is defined as 
(4-4).

{ }1( ) inf : ( )F x F xα α− = ∈ ≥                                 (4-4)

It was named by (4-5).
1( )DX F U−=                                                                             (4-5)

Where U  is uniformly distributed on the interval (0,1).

Therefore, explicit “equations” relating X , its distribution 
F , and some “auxiliary” unobservable random variable U , 

could lead to a new framework for statistical inference.

For example, in parametric sampling models where the 
distribution function of the observable X is ( ),Fθ θ⋅ ∈Θ , 
the above “equation” takes the form 1( ) ( , )X F U a Uθ θ−= =
, where the “association” function a  ( )  is known, as well as the 
distribution of the unobservable U .

In normal model 2( , )θ µ σ=  for X , we write to (4-6).

X Zµ σ= +                                                                                  (4-6)

Then ( , )X a Zθ= , where ( , )θ µ σ=  and Z  distributed 
as standard normal.

As another example, if X follows Bernoulli distribution 

then [0, ]( , ) 1 ( )X a U Uθθ= = , with U  being uniformly 

distributed on interval [0,1] . The above association is due to 

Figure 1 Electrospun nanofibers membrane of poly-ε-caprolactone visualization after 21 days of human Osteoblasts culture (Cells visualization in blue (nucleus /DAPI) 
and PLLFITC labelled nanofibers in green): colonization and proliferation of osteoblasts into the nanofibers membrane.
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Figure 2 Histogram of 4 attributes in the London data.

A)

B)

C)

D)

Figure 3 Forecasting results based on Bayesian Methods processed with raw data and confidence interval of 84%.

the fact that [0, ]1 ( )Uθ  is equal to X  in distribution.

As for now, the identification problem from the “association” 
served in statistical inference is discovering F with observed data 
from X  and the uniform random variable U . This can be seen 
as the reverse problem of simulations. Although X is observable, 
information on U  is limited to only a known distribution. Thus, 
in order to take advantages of the inferential model, a “guess” of 
unobserved values of U  is necessary. As a result, a predictive 
random set U  is proposed. Under a “near Bayesian” point of 
view, U can be treated as a counterpart of the Bayesian prior 
but it is not subjective “prior” which is a drawback in Bayesian 
Statistics. 

In short, the inferential model framework is based on a 
compromise between frequentist and Bayesian approaches to 
statistical analysis in which starting by an objective prior UP

 and 

the subsequent analysis (using observed data) is like a posterior 
analysis. In other words, this frame work is termed “posterior 
analysis without prior”. 

DISCUSSION AND CONCLUSION
Noises appear when collecting data is an inevitable matter. To 

deal with it, we need efficient statistical methods to achieve the 
best result as possible. Robust method, with pros like eliminating 
outliers, could handle the constant bounds well. Bayesian method 
is generally better than Frequentist or Robust method, especially 
with its confidence interval of forecasting values. In addition, its 
capability of updating data over time could result in reflecting 
real trends better.

In order to have reasonable forecasting methods, properties 
of data in real test, such as qualitative, quantitative or bimodal 
distributed properties, and their distribution should be studied 
with caution. This paper has suggested some methods to process 
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Table 1: Results of time series forecasting by using Moving Average method.
                      Prediction Interval
           Attributes µ±1.96×σ µ±σ Large constant bound

(±20 and ±3)
Small constant bound

(±10 and ±2)
Ozone density 96.58% 89.04% 77.88% 48.36%

Temperature 97.95% 93.84% 63.36% 48.56%

Relative humidity 94.86% 72.88% 88.44% 59.73%

Number of deaths 94.86% 69.18% 74.32% 50.84%

Table 2: Results of forecasting using robust statistics with median M. 
                         Prediction Interval
Attributes M±1.96×sd(M) M±sd(M) Large constant

(±20 and ± 3) 
Small constant
(±10  and ±2)

Ozone density 90.62% 71.51% 84.18% 55.75%

Temperature 91.3% 80.14% 87.74% 70.62%

Relative humidity 87.74% 60.68% 89.73% 62.26%

Number of deaths 87.47% 58.36% 74.38% 52.84%

Table 3: Results of Bayesian Statistics.
                           Prediction Interval
Attributes µ±1.96×σ µ±σ

Large constant bound
(±20 and ±3)

Small constant bound
(±10 and ±2)

Ozone density 97.05% 91.78% 78.01% 48.29%

Temperature 98.22% 94.45% 82.74% 63.15%

Relative humidity 97.05% 80.75% 88.84% 59.73%

Number of deaths 99.04% 84.32% 74.32% 43.56%

data with noise, such as making use of all data in Frequentist 
Statistics, eliminating outliers in Robust Statistics, assuming 
parameters as random variables in Bayesian Statistics and 
Robust Bayesian Analysis or linking a random variable with its 
distribution through a description of “association”. However, we 
still need improvements on our statistical techniques to handle 
noise better and get more accurate results in the future.
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